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I. Introduction 
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Why are EDMs Interesting ? 

•  Does QCD violate CP ? 
 
•  What is the BSM CPV needed for 

baryogenesis? 
 
•  What is the BSM mass scale ? 
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EDM Experiments 
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EDMs: New CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 to 
103 more sensitive 

•  CPV needed for 
BAU?  

System Limit (e cm)*   SM CKM CPV BSM CPV 

199 Hg 

 de (ThO) 

n 

3.1 x 10-29 

8.7 x 10-29 ** 

3.3 x 10-26 

* 95% CL ** 90% CL, no eq CPV 

10-33 

10-38 

10-31 

10-29 

10-29 

10-26 

(thanks: T. Chupp) 
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neutron 

 proton 
& nuclei 

atoms 

~ 100 x better 
sensitivity Not shown: 

muon 

 de (ThO) 8.7 x 10-29 ** 

** 90% CL, no eq CPV 
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II. Interpreting EDMs 
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Why Multiple Systems ? 
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Why Multiple Systems ? 

Multiple sources & multiple scales 
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BSM CPV 
SUSY, GUTs, Extra Dim… 

Expt 

? 

EDM Interpretation & Multiple Scales 
Baryon Asymmetry 
Early universe CPV 

Collider Searches 
Particle spectrum; also 
scalars for baryon asym 

QCD Matrix Elements 
 dn , gπNN , … 

Nuclear & atomic MEs 
Schiff moment, other P- & 
T-odd moments, e-nucleus 
CPV 
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Effective Operators  

+… 
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BSM CPV 
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 d= 6 Effective Operators: “CPV Sources” 
 fermion EDM, quark chromo EDM, 3 gluon, 4 fermion 
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Wilson Coefficients: EDM & CEDM 

Chirality 
flipping 

 δf , δq appropriate for comparison 
with other d=6 Wilson coefficients  

~ 
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Wilson Coefficients: Summary 

δf   fermion EDM  (3)	



δq 	

 	

quark CEDM  (2) 

CG   3 gluon   (1) 

Cquqd   non-leptonic   (2) 

Clequ, ledq  semi-leptonic  (3) 

Cϕud   induced 4f   (1) 

 

~ 

~ 

12 total + θ   light flavors only (e,u,d) 
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III. EDMs of Strongly Interacting Systems 
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Hadronic CPV: Nucleons, Nuclei, Atoms 

Neutron, proton & light nuclei (future), diamagnetic atoms  

PVTV πN 
interaction 

€ 

π
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Hadronic CPV: Nucleons, Nuclei, Atoms 

Neutron, proton & light nuclei (future), diamagnetic atoms  

PVTV πN 
interaction 

€ 

π

•  chromo EDM 

•  3 gluon 

•  4 quark 

•  θQCD 
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Hadronic CPV: Nucleons, Nuclei, Atoms 

PVTV πN 
interaction 
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•  chromo EDM 

•  3 gluon 

•  4 quark 

•  θQCD  + quark EDM 

 Nucleon EDM 

Neutron, proton & light nuclei (future), diamagnetic atoms  
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Hadronic CPV: Nucleons, Nuclei, Atoms 

PVTV πN 
interaction 
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•  chromo EDM 

•  3 gluon 

•  4 quark 

•  θQCD  + quark EDM 

 Nucleon EDM Nuclear EDM & 
Schiff moment 

 + quark EDM 

Neutron, proton & light nuclei (future), diamagnetic atoms  
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Diamagnetic Systems: Schiff Moments 

Schiff Screening 

Atomic effect from 
nuclear finite size: 
Schiff moment 

EDMs of diamagnetic 
atoms ( 199Hg )  

Neutral atoms: nuclear EDM 
invisible to external probe  
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Schiff Screening 

Atomic effect from 
nuclear finite size: 
Schiff moment 

EDMs of diamagnetic 
atoms ( 199Hg )  

Schiff moment, MQM,…  

Nuclear Schiff Moment  

(RN / RA)2 suppression  

Diamagnetic Systems: Schiff Moments 
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Nuclear Schiff Moment 

EDMs of diamagnetic atoms ( 199Hg )  

Schiff moment, MQM,…  

Nuclear Enhancements 

Nuclear polarization: 
mixing of opposite parity 
states by HTVPV ~ 1 / ΔE  
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Nuclear Schiff Moment 

EDMs of diamagnetic atoms ( 199Hg )  

Schiff moment, MQM,…  

Nuclear Enhancements 

Nuclear polarization: 
mixing of opposite parity 
states by HTVPV ~ 1 / ΔE  

€ 

π   

€ 

+!
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IV. Hadronic Matrix Elements: Challenges 
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Hadronic Matrix Elements 

dN “Short distance” nucleon EDM 

 gπ(i) TVPV πNN couplings: i=0,1,2 11

express results through O(Q/mN)2 for the neutron and proton EDM’s separately:

dn = d̄n � egA
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dp = d̄p +
egA
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where we have also absorbed the terms analytic to quark mass into d̄p = d̄0+d̄1 (d̄n = d̄0�d̄1)

and evaluated the result at a renormalization scale µ = mN . We observe again that unlike dp,

dn contains no terms proportional to ḡ

(1)
⇡ linear in m⇡ and that its non-analytic quark mass

dependence first appears at NNLO. Thus, compared to the estimates based on Ref. [11], the

dn contributions proportional to 0,1 are suppressed by two powers of m⇡/mN , leading to a

factor of ⇠ 50 suppression.

In principle, the magnitude of the finite parts of the d̄0,1, corresponding to “short range”

dynamics, may be larger than those arising from the loops. In practice, the relative impor-

tance of the short-range and loop contributions depends on the properties of the four-quark

operator in consideration. To illustrate, we consider the interaction of Eq. (4). Using general

chiral symmetry arguments and näıve dimensional analysis (NDA) [26], we expect [7, 20]

ḡ

(1)
⇡ ⇠ ⇤3

�

F⇡⇤2

ImC'ud

(4⇡)2
(23)

d̄0,1 ⇠ e⇤�

⇤2

ImC'ud

(4⇡)2
, (24)

where ⇤� = 2⇡F⇡ ⇠ mN . Substituting the estimate (23) into Eqs. (18) we have that

d̄

NLO, loop
0,1 ⇠ e

(2⇡F⇡)2

⇡m⇡

4mN

⇤3
�
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ImC'ud

(4⇡)2
⇠ e⇤�
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4mN

ImC'ud

(4⇡)2
. (25)

The result in Eq. (25) is suppressed by one power of m⇡/mN with respect to the NDA

estimate (24).

The non-analytic NNLO loop contributions are suppressed by an additional factor of

m⇡/mN with respect to NLO contributions to d0,1, and of m

2
⇡/m

2
N with respect to the short-

distance low-energy constants d̄0,1. For the isoscalar EDM, the suppression is somewhat

mitigated by the enhancement due to the large value of 1.

To get an idea of the relative importance of various terms in Eqs. (21) and (22), we

assume ḡ

(0)
⇡ /ḡ

(1)
⇡ = 0.02. For the neutron EDM, the formally leading order contribution,

 de Vries, Mereghetti, Patel, R-M, Seng ‘13 
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Running & Matching 

How well can we compute the β, ρ, ζ, ...  ? 

Hadronic 
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Hadronic Matrix Elements: Approaches 

•  Chiral symmetry & NDA 

•  Lattice 

•  QCD Sum Rules 

•  Dyson Schwinger Equations 

•  Quark Models 

•  … 
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Hadronic Matrix Elements 

Engel, R-M, 
van Kolck: 
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Hadronic Matrix Elements 

Engel, R-M, 
van Kolck: 
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Hadronic Matrix Elements:  θQCD	



•  Chiral symmetry & NDA 

Author's personal copy
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On the other hand, since

✏m̄hN|P3|Ni = (�mN)q

2
N̄⌧3N, (3.67)

we have that

Chad = (�mN)q /2✏m̄. (3.68)

Hence, the matrix element of the QCD ✓-term operator is

� m̄
2

�

1 � ✏2� ✓̄ hN|P4|N⇡i = 1 � ✏2

2✏
(�mN)q

F⇡

✓̄ N̄⌧ · ⇡N ⌘ ḡ(0)
⇡ N̄⌧ · ⇡N. (3.69)

Thus, we obtain the prediction

ḡ(0)
⇡ = 1 � ✏2

2✏
(�mN)q

F⇡

✓̄ or �(0) = 1 � ✏2

2✏
(�mN)q

F⇡

. (3.70)

If the matrix element (1 � ✏2)(�mN)q/✏ is calculated, ḡ(0)
⇡ /✓̄ comes for free. As a rough estimate, taking (�mN)q ⇠ 2✏m̄

and m̄ ⇠ F⇡/20 one would expect ḡ(0)
⇡ ⇠ 0.05 ✓̄ , or �(0) ⇠ 0.05. We may also express the relationships in Eq. (3.70) as

�(0) ⇠ m2
⇡

⇤�F⇡

. (3.71)

This expectation is given in Table 17 along with predictions for the same quantity using other approaches. The lattice value
for (�mN)q given above implies

�(0) = 0.017 ± 0.005, (3.72)

where the error is obtained by adding the lattice uncertainties in (�mN)q in quadrature.
The foregoing reasoning leads [37] to analogous expectations for the other �(i) as well as the hadronic coefficients ↵N ,

�
(k)
N , and �

(k)
(i) . For example, the simplest way to produce the isovector TVPV ⇡NN interaction ⇡0N̄N in Eq. (3.38) is from a

tensor product of two pseudoscalar vectors, and as a consequence

�(1) ⇠ m4
⇡

⇤3
�F⇡

, (3.73)

where we took ✏ ⇠ 1. The isotensor ⇡NN interaction in Eq. (3.38) is even more suppressed.
The analogous arguments for the short-range components of the nucleon EDM are more complicated because one needs

to account for the chiral transformation properties of the interaction between quarks and the photon field Aµ,

Lquark
charge = � e

6
Aµ q̄� µ (1 + 3⌧3) q. (3.74)

While the first term is a chiral scalar, the second is the 3–4 component of an antisymmetric tensor. Taking the tensor product
with the pseudoscalar vector P , they give rise, respectively, to the isoscalar and isovector nucleon EDMs. Thus, one expects

d̄0,1 ⇠ e✓̄
m2

⇡

⇤3
�

or ↵N ⇠ e
m2

⇡

⇤3
�

⇠ 0.2
m2

⇡

⇤2
�

e fm, (3.75)

where the additional factors of ⇤�2
� are simply a consequence of dimensional analysis.

3.2.2. Dimension-six operators
We now consider the dimension-six CPV operators appearing in Eq. (2.4) and arising from BSM physics [23]. The quark

CEDMs can be embedded in SO(4) vectors and pseudovectors:

SAµ⌫GA
µ⌫ ⌘

✓�iq̄�µ⌫�5⌧ TAq
q̄�µ⌫TAq

◆

GA
µ⌫ and PAµ⌫GA

µ⌫ ⌘
✓

q̄�µ⌫⌧ TAq
iq̄�µ⌫�5TAq

◆

GA
µ⌫ . (3.76)

Thus, the isoscalar and isovector CEDM operators transform as the P4 and S3 components of an SO(4) pseudovector and
vector, respectively. They contribute to ḡ(0)

⇡ and ḡ(1)
⇡ without any additional factors associated with chiral symmetry

breaking. Thus, we expect these two couplings to be comparable,

ḡ(0,1)
⇡ ⇠ ⇤2

�

vF⇡

⇣ v

⇤

⌘2
Im CqG or �

qG
(0,1) ⇠ ⇤2

�

vF⇡

. (3.77)
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2✏
(�mN)q

F⇡

. (3.70)

If the matrix element (1 � ✏2)(�mN)q/✏ is calculated, ḡ(0)
⇡ /✓̄ comes for free. As a rough estimate, taking (�mN)q ⇠ 2✏m̄

and m̄ ⇠ F⇡/20 one would expect ḡ(0)
⇡ ⇠ 0.05 ✓̄ , or �(0) ⇠ 0.05. We may also express the relationships in Eq. (3.70) as

�(0) ⇠ m2
⇡

⇤�F⇡

. (3.71)

This expectation is given in Table 17 along with predictions for the same quantity using other approaches. The lattice value
for (�mN)q given above implies

�(0) = 0.017 ± 0.005, (3.72)

where the error is obtained by adding the lattice uncertainties in (�mN)q in quadrature.
The foregoing reasoning leads [37] to analogous expectations for the other �(i) as well as the hadronic coefficients ↵N ,

�
(k)
N , and �

(k)
(i) . For example, the simplest way to produce the isovector TVPV ⇡NN interaction ⇡0N̄N in Eq. (3.38) is from a

tensor product of two pseudoscalar vectors, and as a consequence

�(1) ⇠ m4
⇡

⇤3
�F⇡

, (3.73)

where we took ✏ ⇠ 1. The isotensor ⇡NN interaction in Eq. (3.38) is even more suppressed.
The analogous arguments for the short-range components of the nucleon EDM are more complicated because one needs

to account for the chiral transformation properties of the interaction between quarks and the photon field Aµ,

Lquark
charge = � e

6
Aµ q̄� µ (1 + 3⌧3) q. (3.74)

While the first term is a chiral scalar, the second is the 3–4 component of an antisymmetric tensor. Taking the tensor product
with the pseudoscalar vector P , they give rise, respectively, to the isoscalar and isovector nucleon EDMs. Thus, one expects

d̄0,1 ⇠ e✓̄
m2

⇡

⇤3
�

or ↵N ⇠ e
m2

⇡

⇤3
�

⇠ 0.2
m2

⇡

⇤2
�

e fm, (3.75)

where the additional factors of ⇤�2
� are simply a consequence of dimensional analysis.

3.2.2. Dimension-six operators
We now consider the dimension-six CPV operators appearing in Eq. (2.4) and arising from BSM physics [23]. The quark

CEDMs can be embedded in SO(4) vectors and pseudovectors:

SAµ⌫GA
µ⌫ ⌘

✓�iq̄�µ⌫�5⌧ TAq
q̄�µ⌫TAq

◆

GA
µ⌫ and PAµ⌫GA

µ⌫ ⌘
✓

q̄�µ⌫⌧ TAq
iq̄�µ⌫�5TAq

◆

GA
µ⌫ . (3.76)

Thus, the isoscalar and isovector CEDM operators transform as the P4 and S3 components of an SO(4) pseudovector and
vector, respectively. They contribute to ḡ(0)

⇡ and ḡ(1)
⇡ without any additional factors associated with chiral symmetry

breaking. Thus, we expect these two couplings to be comparable,

ḡ(0,1)
⇡ ⇠ ⇤2

�

vF⇡

⇣ v

⇤

⌘2
Im CqG or �

qG
(0,1) ⇠ ⇤2

�

vF⇡

. (3.77)
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Hadronic Matrix Elements 

Engel, R-M, 
van Kolck: 
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Hadronic Matrix Elements 

DSE: Pitschmann et al, 1209.4352, 
PRC 87 (2013) 015205 

 ρ EDM 
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V. Implications & Outlook 
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EDMs & EW Baryogenesis: MSSM 

Heavy sfermions: LHC 
consistent & suppress 
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Sub-TeV EW-inos: LHC & EWB -
viable but non-universal phases 
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spectrum 
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V. Implications & Outlook 

•  EDMs provide a powerful probe of CPV 
physics at the multi-TeV scale 

•  Searches in a variety of systems needed to 
uncover and disentangle effects associated 
with different “sources” (eg, d=6 operators) 

•  Obtaining reliable non-perturbative 
computations remains a key open challenge, 
with implications for interpretation of EDMs in 
terms of BSM physics & cosmology 
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BSM Origins 

δf   MSSM, RS, LRSM      1 & 2 loop	
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BSM Origins 

EDM: γff
 CEDM: gff
	

 	

 

 

Weinberg ggg:    

 

 

Four fermion   
  

 

udHH     



44 

BSM Origins 

EDM: γff
 CEDM: gff
	

 	

 

 

Weinberg ggg:    

 

 

Four fermion   
  

 

udHH     

MSSM 



45 

BSM Origins 

EDM: γff
 CEDM: gff
	

 	

 

 

Weinberg ggg:    

 

 

Four fermion   
  

 

udHH     

MSSM LRSM 

dL 

uL 

uR 

dR 

W+ 

ϕ

ϕ



46 

BSM Origins 

EDM: γff
 CEDM: gff
	

 	

 

 

Weinberg ggg:    

 

 

Four fermion   
  

 

udHH     

MSSM 
RS 

LRSM 

dL 

uL 

uR 

dR 

W+ 

ϕ

ϕ



47 

Recent Interest: EDMs & H!γγ 

McKeen, Pospelov, Ritz ‘12 Shu, Zhang ‘13 

SM + singlet & vector-like leptons 2HDM & connection with BAU 
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Nuclear Schiff Moment 

EDMs of diamagnetic atoms ( 225Ra )  

Nuclear Enhancements: 
Octupole Deformation  

Nuclear polarization: 
mixing of opposite parity 
states by HTVPV ~ 1 / ΔE  

Opposite parity states 
mixed by HTVPV 

Thanks: J. Engel 
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Running & Matching 

Nuclear many-body 
computations 

Nuclear 

Non-perturbative hadronic 
computations 
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Nuclear Matrix Elements 

Engel, R-M, 
van Kolck: 
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Schiff Screening & Corrections 

Schiff Screening 

Atomic effect from 
nuclear finite size: 
Schiff moment 

EDMs of diamagnetic 
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